A recent controversy erupted over OpenAI’s new version of their language model for generating well-written next words of text based on unsupervised analysis of large samples of writing. Their announcement and decision not to follow open-source practices raises interesting policy issues about regulation and self-regulation of AI products. OpenAI, a non-profit AI research company founded by Elon Musk and others, announced on February 14, 2019, that “We’ve trained a large-scale unsupervised language model which generates coherent paragraphs of text, achieves state-of-the-art performance on many language modeling benchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization—all without task-specific training.”
The reactions to the announcement followed from the decision behind the following statement in the release: “Due to our concerns about malicious applications of the technology, we are not releasing the trained model. As an experiment in responsible disclosure, we are instead releasing a much smaller model for researchers to experiment with, as well as a technical paper.”
Examples of the many reactions are TechCrunch.com and Wired. The Electronic Frontier Foundation has an analysis of the manner of the release (letting journalists know first) and concludes, “when an otherwise respected research entity like OpenAI makes a unilateral decision to go against the trend of full release, it endangers the open publication norms that currently prevail in language understanding research.”
This issue is an example of previous ideas in our Public Policy blog about who, if anyone, should regulate AI developments and products that have potential negative impacts on society. Do we rely on self-regulation or require governmental regulations? What if the U.S. has regulations and other countries do not? Would a clearinghouse approach put profit-based pressure on developers and corporations? Can the open source movement be successful without regulatory assistance?