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Introduction

In this column, we will look at a particular Kag-
gle.com click-through rate (CTR) prediction
competition, observe what the winning entries
teach about this part of the machine learning
landscape, and then discuss the valuable op-
portunities and resources this commends to AI
educators and their students.

Kaggle’s Criteo Display Advertising
Challenge

Kaggle1 is a data science/statistics/machine
learning website that offers an excellent plat-
form for modeling and prediction competitions.
Data for training and analysis is often provided
by companies, and top performers in compe-
titions are encouraged and often required to
supply and document their winning entries, of-
fering valuable snapshots to current best prac-
tices in varied machine learning and data min-
ing tasks.

Four years ago, Criteo Labs ran a Kaggle
competition concerning CTR prediction called
the “Criteo Display Advertising Challenge”2.
The February 10, 2014 Criteo dataset was
no longer available via the Kaggle competition
site, but is still currently available from Criteo
Labs3. The dataset is described on the Kag-
gle competition site as follows:

File descriptions

train.csv The training set consists of a por-
tion of Criteo’s traffic over a period of 7 days.
Each row corresponds to a display ad served
by Criteo. Positive (clicked) and negatives (non-
clicked) examples have both been subsampled
at different rates in order to reduce the dataset
size. The examples are chronologically ordered.

Copyright c© 2018 by the author(s).
1https://www.kaggle.com
2https://www.kaggle.com/c/criteo

-display-ad-challenge
3https://s3-eu-west-1.amazonaws

.com/criteo-labs/dac.tar.gz

test.csv The test set is computed in the same
way as the training set but for events on the day
following the training period.

Data fields

Label Target variable that indicates if an ad was
clicked (1) or not (0).

I1-I13 A total of 13 columns of integer features
(mostly count features).

C1-C26 A total of 26 columns of categorical fea-
tures. The values of these features have been
hashed onto 32 bits for anonymization pur-
poses. The semantic of the features is undis-
closed.

The training set consists of 45,840,617 exam-
ples, so competitors had to consider the size
of the data when approaching the problem.
The number of unique categorical feature val-
ues, for example, meant that a normal one-
hot encoding of categorical features was com-
putationally infeasible. Many numeric feature
distributions were significantly skewed, so dis-
cretization via equal-width binning was inad-
visable.

Also significant was the number of missing
values in the dataset. Many machine learn-
ing (ML) and statistical learning texts have lit-
tle or no coverage of the handling of missing
values, and my own ML game research ap-
plications often involve complete information,
so this wrinkle in both numeric and categori-
cal data provides opportunities for learning be-
yond familiar, clean datasets.

Lessons from the Winners

Winners of this and 3 other recent CTR predic-
tion competitions most often used two types
of algorithms: gradient-boosted trees (GBTs,
e.g. XGBoost Chen & Guestrin (2016)4), and
field-aware factorization machines (FFMs, e.g.

4https://xgboost.readthedocs.io
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libffm5 Juan et al. (2016)). Even the win-
ning team of Criteo’s challenge made use of
gradient-boosted decision trees to generate
features for their FFMs6.

Decision trees, a.k.a. classification and re-
gression trees (CARTs), can handle missing
values with ease, so the shortest path for a
practitioner to see success in CTR prediction
or related problems would be to learn the use
of XGBoost. As an AI educator, I would want
my students to understand GBTs, so I would
want to guide them through the concept de-
pendencies leading up to the understanding
of GBTs.

In a previous column (Neller (2017)), I rec-
ommended general machine learning teach-
ing resources for introducing the general prob-
lem of supervised learning. In that context,
provide a basic introduction to decision trees
using one of many good references (e.g. Quin-
lan (1986), James et al. (2014), §8.1, Russell
& Norvig (2009), §18.1-18.3, Murphy (2012),
§16.1-16.2, Mitchell (1997), Ch. 3). Next, in-
troduce the concept of boosting (e.g. James et
al. (2014), §8.1, Hastie et al. (2009), Ch. 10)
and then gradient boosting (e.g. Hastie et al.
(2009), §10.10, Chen & Guestrin (2016)).

Given the dominance of Python in the Kag-
gle community7, I would recommend pairing
these readings with practical Python exercises
through Kaggle machine learning tutorials8,
the well-crafted, ongoing introductory compe-
tition on survivor prediction given Titanic pas-
senger data9, and even working with a subset
of the Criteo dataset. I would further note that
Kaggle now offers Kaggle InClass10, a free,
self-service platform that allows instructors to
create classroom competitions.

As I explored Kaggle’s Criteo CTR prediction

5https://github.com/guestwalk/
libffm

6https://www.csie.ntu.edu.tw/
˜r01922136/kaggle-2014-criteo.pdf

7https://www.kaggle.com/surveys/
2017

8https://www.kaggle.com/learn/
machine-learning, XGBoost-specific tutorial:
https://www.kaggle.com/dansbecker/
learning-to-use-xgboost

9https://www.kaggle.com/c/titanic
10https://www.kaggle.com/about/

inclass/overview

competition and considered how I would guide
a student to an appreciation of that work, I
gained a great appreciation for the many au-
thors that provide a foundational understand-
ing for boosting trees, the excellent Kaggle
data science community and their amazing
platform, and the companies that partner with
Kaggle to bring interesting challenges for the
great educational benefit of all. I hope this col-
umn sparks your curiosity to explore the excit-
ing educational opportunities these abundant
resources offer.
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